python - How to merge two DataFrame columns and apply pandas.to_datetime to it? -
i''m learning use pandas, use data analysis. data supplied csv file, several columns, of need use 4 (date, time, o, c). i'll create new dataframe, uses index datetime64 number, number creating merging first 2 columns, applying pd.to_datetime on merged string.
my loader code works fine:
st = pd.read_csv("c:/data/stockname.txt", names=["date","time","o","h","l","c","vol"]) the challenge converting loaded dataframe new one, right format. below works slow. moreover, makes 1 column new datetime64 format, , doesnt make index.
my code
st_new = pd.concat([pd.to_datetime(st.date + " " + st.time), (st.o + st.c) / 2, st.vol], axis = 1, ignore_index=true) what more pythonic way merge 2 columns, , apply function result? how make new column index of dataframe?
you can everythin in read_csv function:
pd.read_csv('test.csv', parse_dates={'timestamp': ['date','time']}, index_col='timestamp', usecols=['date', 'time', 'o', 'c']) parse_dates tells read_csv function combine date , time column 1 timestamp column , parse timestamp. (pandas smart enough know how parse date in various formats)
index_col sets timestamp column index.
usecols tells read_csv function select subset of columns.
Comments
Post a Comment